Mlo基因在葡萄抗白腐病中作用的研究

贾云飞1,2, 张国海1, 刘崇怀2, 樊秀彩2, 姜建福2, 孙海生2, 张颖2,*
1河南科技大学林学院, 河南洛阳471023; 2中国农业科学院郑州果树研究所, 郑州450009

通信作者:张颖;E-mail: zhangying05@caas.cn

摘 要:

Mlo转录因子是植物抗病反应中一类重要的负调控因子。试验通过对葡萄(Vitis vinifera) VvMlo基因家族成员的基本特征、基因结构、染色体位置、蛋白结构进行分析, 结合其他作物已报道的抗病相关Mlo基因构建系统进化树, 推断与葡萄抗病机制相关的Mlo基因。另以抗病刺葡萄(V. davidii)品种‘刺葡萄0943’和感病葡萄(V. vinifera)品种‘美人指’为材料, 分析不同材料Mlo基因的表达量, 获得对白腐菌黄孢原毛平革菌(Phanerochaete chrysosporium)有响应的Mlo基因。结果显示: 抗白粉病的拟南芥Mlo基因(AtMlo2AtMlo6AtMlo12)、番茄(Solanum lycopersicum) SlMlo1基因以及葡萄Mlo基因(VvMlo3VvMlo6VvMlo9.1VvMlo13.1VvMlo13.2VvMlo17)聚在第IV组。第IV组中的‘刺葡萄0943’和‘美人指’ Mlo基因在接种白腐菌后有不同的响应。此外, 在白腐菌侵染过程中, 第VI组中VvMlo15的表达量明显高于VdMlo15, 且在整个接菌过程中VvMlo15对白腐菌侵染有响应, VdMlo15对白腐菌几乎无响应。VvMlo15的基因结构、蛋白结构、分子质量、等电点、跨膜结构等特点也与第IV组中的VvMlo基因特点更相似。综合推测, VdMlo15在葡萄抗白腐病方面可能具有重要作用。

关键词:‘刺葡萄0943’; Mlo基因家族; 生物信息学; 白腐菌

收稿:2017-03-16   修定:2017-08-01

资助:国家自然科学基金青年基金(31201599)、国家葡萄技术产业体系项目(CARS-30)、中国农业科学院创新工程项目(CAAS-ASTIP-2015-ZFRI)、中央级科研院所基本科研业务费专项(1610192016202)和“十二五”国家科技支撑计划课题(2013BAD01B04-20)。

Study on the function of resistance to white rot of Mlo genes in grapevine

Jia Yun-Fei1,2, Zhang Guo-Hai1, Liu Chong-Huai2, Fan Xiu-Cai2, Jiang Jian-Fu2, Sun Hai-Sheng2, Zhang Ying2,*
1College of Forestry, Henan University of Science and Technology, Luoyang, Henan 471023, China; 2Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China

Corresponding author: Zhang Ying; E-mail: zhangying05@caas.cn

Abstract:

Mlo transcription factor is an important negative regulator of plant disease resistance. Through the analysis of the basic characteristics, genetic structure, chromosome location and putative protein structure of the family members of grapevine (Vitis vinifera) VvMlo genes and the reported Mlo genes related to the disease resistance, this study aims at establishing a phylogenetic tree and inferring Mlo genes which relates to grapevine resistance mechanism. In addition, this experiment analyzed the expression of Mlo in resistant cultivar ‘Vitis davidii 0943’ and susceptible cultivar ‘Manicure Finger’, and through this the wanted Mlo genes were obtained, which can respond to Phanerochaete chrysosporium. The results show that 6 VvMlo genes (VvMlo3, VvMlo6, VvMlo9.1, VvMlo13.1, VvMlo13.2 and VvMlo17) were grouped into the group IV which contains Mlo genes of known function in disease resistance, such as Arabidopsis thaliana Mlo genes (AtMlo2, AtMlo6 and AtMlo12) and Solanum lycopersicum SlMlo1 gene. Mlo genes of ‘Vitis davidii 0943’ and ‘Manicure Finger’ in the group IV had different responses to white rot. Furthermore, the expression of VvMlo15 was significantly higher than VdMlo15 during the infection of white rot. In the whole process of fungal infection, VvMlo15 had strong response to white rot infection, while VdMlo15 had a little. The characteristics of the genetic structure, protein structure, molecular mass, isoelectric point and transmembrane structure of VvMlo15 are more similar to those of VvMlo genes in group IV. It can be speculated that VdMlo15 plays an important role in the resistance to white rot of grape.

Key words: Vitis davidii 0943’; Mlo gene family; bioinformatics; white-rot fungus

此摘要已有 1051 人浏览

Back to top